Cross-talk unfolded: MARCKS proteins.
نویسندگان
چکیده
The proteins of the MARCKS (myristoylated alanine-rich C kinase substrate) family were first identified as prominent substrates of protein kinase C (PKC). Since then, these proteins have been implicated in the regulation of brain development and postnatal survival, cellular migration and adhesion, as well as endo-, exo- and phago-cytosis, and neurosecretion. The effector domain of MARCKS proteins is phosphorylated by PKC, binds to calmodulin and contributes to membrane binding. This multitude of mutually exclusive interactions allows cross-talk between the signal transduction pathways involving PKC and calmodulin. This review focuses on recent, mostly biophysical and biochemical results renewing interest in this protein family. MARCKS membrane binding is now understood at the molecular level. From a structural point of view, there is a consensus emerging that MARCKS proteins are "natively unfolded". Interestingly, domains similar to the effector domain have been discovered in other proteins. Furthermore, since the effector domain enhances the polymerization of actin in vitro, MARCKS proteins have been proposed to mediate regulation of the actin cytoskeleton. However, the recent observations that MARCKS might serve to sequester phosphatidylinositol 4,5-bisphosphate in the plasma membrane of unstimulated cells suggest an alternative model for the control of the actin cytoskeleton. While myristoylation is classically considered to be a co-translational, irreversible event, new reports on MARCKS proteins suggest a more dynamic picture of this protein modification. Finally, studies with mice lacking MARCKS proteins have investigated the functions of these proteins during embryonic development in the intact organism.
منابع مشابه
MARCKS as a negative regulator of lipopolysaccharide signaling.
Myristoylated alanine-rich C kinase substrate (MARCKS) is an intrinsically unfolded protein with a conserved cationic effector domain, which mediates the cross-talk between several signal transduction pathways. Transcription of MARCKS is increased by stimulation with bacterial LPS. We determined that MARCKS and MARCKS-related protein specifically bind to LPS and that the addition of the MARCKS ...
متن کاملMARCKS actin-binding capacity mediates actin filament assembly during mitosis in human hepatic stellate cells.
Cross-linking between the actin cytoskeleton and plasma membrane actin-binding proteins is a key interaction responsible for the mechanical properties of the mitotic cell. Little is known about the identity, the localization, and the function of actin filament-binding proteins during mitosis in human hepatic stellate cells (hHSC). The aim of the present study was to identify and analyze the cro...
متن کاملMARCKS is a natively unfolded protein with an inaccessible actin-binding site: evidence for long-range intramolecular interactions.
Myristoylated alanine-rich C kinase substrate (MARCKS) is an unfolded protein that contains well characterized actin-binding sites within the phosphorylation site domain (PSD), yet paradoxically, we now find that intact MARCKS does not bind to actin. Intact MARCKS also does not bind as well to calmodulin as does the PSD alone. Myristoylation at the N terminus alters how calmodulin binds to MARC...
متن کاملEndoplasmic reticulum stress and unfolded protein response in infection by intracellular parasites
Perturbations of the physiological status of the endoplasmic reticulum (ER) trigger a specific response known as the ER stress response or unfolded protein response (UPR). In mammalian cells, the UPR is mediated by three ER transmembrane proteins (IRE1, PERK and ATF6) which activate three signaling cascades to restore ER homeostasis. In recent years, a cross-talk between UPR, inflammatory and m...
متن کاملCross-talk between PI3K/Akt and MEK/ERK pathways mediates endoplasmic reticulum stress-induced cell cycle progression and cell death in human hepatocellular carcinoma cells.
The unfolded protein response (UPR) is a conserved adaptive response utilized by cells to cope with endoplasmic reticulum (ER) stress. In addition to the UPR, cells also trigger other adaptive responses under ER stress conditions. Although the PI3K/Akt and MEK/ERK pathways are known to protect cells from ER stress-induced apoptosis, their other functions under ER stress remain elusive. Here, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 362 Pt 1 شماره
صفحات -
تاریخ انتشار 2002